Documentation

Build LLM-powered agents
with production-ready TypeScript

DSPy for TypeScript. Working with LLMs is complex—they don't always do what you want. DSPy makes it easier to build amazing things with LLMs. Just define your inputs and outputs (signature) and an efficient prompt is auto-generated and used. Connect together various signatures to build complex systems and workflows using LLMs.

15+ LLM Providers
End-to-end Streaming
Auto Prompt Tuning

AxGen Guide

AxGen is the core programmable unit in Ax. It represents a single step in an AI workflow, encapsulating a signature (input/output definition), a prompt template, and execution logic (including retries, streaming, and assertions).

AxGen is designed to be composable, allowing you to build complex workflows by chaining multiple AxGen instances together or using them within AxFlow.

Creating an AxGen Instance

To create an AxGen instance, you need a Signature. A signature defines the input fields and output fields for the generation task.

import { AxGen } from '@ax-llm/ax';

const gen = new AxGen(
  `input:string -> output:string, reasoning:string`
);

You can also use the AxSignature builder for more complex signatures:

import { AxGen } from '@ax-llm/ax';

const gen = new AxGen(
  `question:string, context:string[] -> answer:string`
);

Options

The AxGen constructor accepts an optional configuration object:

const gen = new AxGen('input -> output', {
  description: 'A helpful assistant', // Description for the prompt
  maxRetries: 3,        // Default retries for assertions/validation
  maxSteps: 10,         // Max steps for multi-step generation
  temperature: 0.7,     // Default Model temperature (can be overridden)
  fastFail: false,      // If true, fail immediately on error
  debug: false          // Enable debug logging
});

Running AxGen

To run an AxGen instance, you use the forward method. This method sends the request to the AI service and processes the response.

passing an AI Service

You must pass an AxAI service instance to forward.

import { AxAI, AxAIOpenAIModel } from '@ax-llm/ax';
  
  const ai = new AxAI({
    name: 'openai',
    apiKey: process.env.OPENAI_API_KEY,
    config: { model: AxAIOpenAIModel.GPT4O }
  });

const result = await gen.forward(ai, { input: 'Hello world' });
console.log(result.output);

Options for forward

The forward method accepts an options object as the third argument, allowing you to override defaults and configure per-request behavior.

const result = await gen.forward(ai, { input: '...' }, {
  // Execution Control
  maxRetries: 5,        // Override default max retries
  stopFunction: 'stop', // Custom stop function name

  // AI Configuration
  model: AxAIOpenAIModel.GPT4Turbo, // Override model for this call
  modelConfig: {
    temperature: 0.9,
    maxTokens: 1000
  },

  // Retry Configuration (Low-level)
  retry: {
    maxRetries: 3,
    backoffFactor: 2,
    maxDelayMs: 30000
  },

  // Debugging
  debug: true,          // Enable debug logging for this call
  traceLabel: 'custom-trace'
});

Streaming

AxGen supports streaming responses, which is useful for real-time applications.

Using streamingForward

Use streamingForward to get an async generator that yields partial results.

const stream = gen.streamingForward(ai, { input: 'Write a long story' });

for await (const chunk of stream) {
  // chunk contains partial deltas and the current accumulated state
  if (chunk.delta.output) {
    process.stdout.write(chunk.delta.output);
  }
}

The chunk object contains:

Structured Outputs

AxGen automatically handles structured outputs based on your signature. If your output signature contains types other than string (like specific classes, arrays, or JSON objects), AxGen will instruct the LLM to produce JSON and strict type validation will be applied.

const gen = new AxGen<{ topic: string }, { tags: string[], sentiment: 'pos' | 'neg' }>(
  `topic:string -> tags:string[], sentiment:string`
);

const result = await gen.forward(ai, { topic: 'Ax Framework' });
// result.tags is string[]
// result.sentiment is 'pos' | 'neg'

Assertions and Validation

You can add assertions to AxGen to validate the output. If an assertion fails, AxGen can automatically retry with error feedback (self-correction).

gen.addAssert(
  (args) => args.output.length > 50,
  "Output must be at least 50 characters long"
);

// Streaming assertions work on partial updates
gen.addStreamingAssert(
  'output',
  (text) => !text.includes('forbidden'),
  "Output contains forbidden text"
);